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1 The Manhattan-Connected

Exact-Coloring Problem

Consider a matrix. Two cells are “manhattan ad-
jacent horizontally” if their vertical coordinates are
the same and their horizontal coordinates differ by
exactly one. Define “manhattan adjacent verti-
cally” similarly. Two cells are “manhattan adja-
cent” iff they are manhattan adjacent vertically or
horizontally. A “manhattan path” is a sequence
of cells within which sequence-consecutive implies
manhattan-adjacent. A set of cells is “manhattan
connected” iff for all pairs of cells in the set there is
a manhattan path between them consisting only of
cells in the set.

A “coloring” of a matrix is a map from cells to col-
ors. A subset of a colored matrix is a manhattan-
connected exact-coloring iff it is a manhattan-
connected subset containing each color exactly once.
The “manhattan-connected exact-coloring problem”
[MCXC] is the question given a colored matrix, does
there exist a subset of the cells that is a manhattan-
connected exact-coloring ?

2 MCXC is NP-Complete

Theorem: The manhattan-connected exact-coloring
problem is NP-Complete.

Proof: By reduction from the version of [At-Most-]
3SAT where not only does each clause have at most
three terminals (variables or their negation) in it, but
also each variable occurs in at most 3 clauses; see
Garey and Johnson 1979 [2], p 259:

SATISFIABILITY; INSTANCE: Set U of
variables, collection C of clauses over U;
QUESTION: Is there a satisfying truth as-
signment for C ? . . . Remains NP-complete
even if each c in C satisfies |c| = 3 (3SAT),
or if each c in C satisfies |c| ≤ 3 and, for
each u in U, there are at most 3 clauses in
C that contain either u or not(u).

[dsw: that is, reading the related theorems more care-
fully, this problem is not properly “3SAT” plus an ad-
ditional constraint, but instead a very closely related,
yet different, problem I’ll call “At-Most-3SAT”: the
difference is that in 3SAT each clause must have *ex-
actly* 3 terms (a variable or the negation of a vari-
able), whereas in At-Most-3SAT, each clause must
have *at most* 3 terms.]

Mapping At-Most-3SAT to the plane: Given
a[n] [At-Most-] 3SAT instance as above, map the for-
mula to a planar graph as follows.
◦ For an AND, recursively map its elements and

then connect them in *series*.
◦ For an OR, recursively map its elements and

then connect them in *parallel*.
For each terminal (a variable or its negation), below
we will insert a widget that will connect iff that ter-
minal evaluates to true. Note that in 3SAT the AND
is on the outside and the ORs are on the inside, so
draw the graph, say, vertically: it is arbitrarily high
but only widgets wide. Add unique top and bottom
nodes. There will be a path in the graph from top to
bottom iff the formula is satisfiable.
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Coloring the edges: Digitize the the planar graph
and draw it on a matrix, leaving at least two cells of
background between any two arcs that are not sup-
posed to connect. Make top and bottom unique col-
ors; the manhattan solver must choose top and bot-
tom for the manhattan-connected exact-colored set
because they are unique and it must connect them.
Make the background all one color; at most one back-
ground cell can be chosen and it would take two of
them to make a connection across the background
between two parts of the graph. Therefore the con-
nection between top and bottom must be made using
only cells within the graph. Except for the terminal
widgets (below), make every graph arc a unique color,
so that they must be chosen.

Coloring the variables: As AND and OR are
monotonic, if all occurrences of a variable are pos-
itive we can simply set that variable to true and sim-
ply the formula. Similarly for a variable where all
occurrences are negative. As we chose the version
of 3SAT where each variable occurs at most 3 times
[(At-Most-3SAT)], without loss of generality a given
variable V occurs twice in the positive and once in
the negative (should the reverse be the case, invert
the variable and convert to the assumed case).

If a variable occurs thrice, choose two unique col-
ors: V red and V blue. At one of the sites of the
positive occurrence of V, color a single cell V red; at
the site of the other positive occurrence, color a sin-
gle cell V blue; at the site of the negative occurrence
of V, put two cells in series (say vertically), one col-
ored V red and the other colored V blue. Now, the
manhattan solver can either choose to connect either
(1) the site of the one negative terminal, or (2) both
the sites of the two positive terminals, but not both.
(Note that in either case the graph arcs leading to
the sites of all terminals will be connected in both di-
rections; that is, due to the way graph arcs were con-
structed, all having unique colors, we mustn’t chop
off pieces of arc and leave them disconnected from
the rest of the graph; we don’t). The case where a
variable occurs twice is left to the reader.

Showing this mapping is a satisfiability iso-

morphism: In sum, the manhattan solver can
choose a connected subset having each color exactly
once iff it chooses all of the arcs of the graph and ex-
actly one (irrelevant) background cell. If the formula
is satisfiable, then top will connect to bottom (and
the rest of the graph). If top and bottom connect,
the formula is satisfiable.

Quod erat demonstrandum.

Further notes: You don’t need each edge in the
graph to map to a square. You just draw the graph
on the plane the way you would on a computer screen
and then use a different color for each square. A
graph edge is a curve on the plane, so digitize that
and then for each square, pick a new color. That is,
most of the graph is unique color squares, except for
the widgets corresponding to the terms (variables or
their negation) where only two squares are one color.
Other than background, no color ever has more than
two squares.

Also, to make the proof sound simpler, I just said
separate each graph component by two background
squares but you can force the manhattan solver to
pick just one particular background square if you
want by making a square a distance of two from the
bottom square and surrounded by background. Now
the solver has to pick the one background square be-
tween bottom and this new square, which means it
can’t pick any of the other background squares. This
makes the proof a paragraph longer, but the diagram
easier to draw in your head.

3 The making of . . .

I came to this problem through a friend who was
taking Professor Richard M. Karp’s CS 270 Combi-
natorial Algorithms and Data Structures class at The
University of California, Berkeley. At the time I was
just trying to help a friend with his homework (of
course with the intent to provide proper notification
to the course grader). After I solved it my friend
told me that in fact neither Karp nor his teaching
assistant had a solution.
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I [Wilkerson] chose the exact name “Manhattan-
Connected Exact-Coloring” for the problem. Karp
informs me that this problem originates from Richard
M. Karp [unpublished] who derived it from a more
general question posed in both BHKSS [1] and “inde-
pendently in a paper on social networks that I [Karp]
am not able to track down”.

According to my email records, I sent the orig-
inal email containing the main body of the proof,
Section 1 and Section 2, except Subsection “Further
notes”, to Karp’s teaching assistant on Sun, 23 May
2010 15:47:36 -0700. In response to a further question
by him, I sent a follow-up email containing Subsec-
tion “Further notes” to him on Sun, 30 May 2010
10:14:24 -0700. I forwarded those emails containing
all of those sections to Karp on Sun, 13 Jun 2010
02:09:12 -0700. This document is as it was presented
in the above emails except for the addition of all for-
matting, all section headings, all comments in square-
brackets, the title, the bibliography, and this section.
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